Linear Regression

Finding a linear function based on X to best yield Y.

X = “covariate” = “feature” = “predictor” = “regressor’ = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

A =)

Regression: riz)=E¥Y

goal: estimate the function r



Linear Regression

Finding a linear function based on X to best yield Y.
X = “covariate” = “feature” = “predictor” = “regressor’ = “independent variable”

Y = “response variable” = “outcome” = “dependent variable”

A =)

Regression: rizl=EY
goal: estimate the function r
Linear Regression (univariate version): r(x) = 3, + @

goal: find 8, §, such that r(z) &~ E(Y|X = x)




Linear Regression

Simple Linear Regression Y, = 5y + E_‘f 1.X; + €
where E(¢;|X;) = 0 and V(| X;) = o

riz) = by + iz



Linear Regression

— eITor

Simple Linear Regression Y, =580+ 51X, + e—

where E(e;|.X; =W{T“!I;J o

expected variance

/

intercept slope



Linear Regression

Simple Linear Regression K

— error

= .1'3{_; + ﬁle ) ] 2

where E(¢|.X;

= W{?ﬁl—;] = g*

intercept

Estimated intercept and slope: ',Iﬁ'(;l.‘) = ﬁ” 1= _531_ 4 J

Y; = £(X;)
Residual: =Y. -Y;

expected variance




Linear Regression

— error

Simple Linear Regression Y, = 5y + l’_‘f 1A HEe—
where E(¢;| X,

expected variance

intercept slope

Estimated intercept and slope: 7" [:_;r_.'} — I_.'f:,f” 1= :’31 &L

Y; = #(X;)

2t

{
Residual: =Y. -Y;

Least Squares Estimate. Find .-'éﬂ and I,-'S’l,which minimizes the
residual sum of squares:

1

R55 = if?} = iﬂ} ~-Y)? = Z{}'} — B — B XY
=] i=1

=]



Linear Regression

.
' via Gradient Descent .

Start with Fy= 31 =0

Repeat until convergence:
Calculate all Y]

y=h—-a) ¥ -Y)
=1

G=mh—ad) Xi(Yi-Y)) /_,.I
=1

S "

h

Least Squares Estimate. Find I.'E}” and (37 which minimizes the
residual sum of squares:

1

Ba= if’l - it}} =K} = Z{}:’ — B — B X))’
i=1 =1

=]



Linear Regression

.-‘.--- -\E\-\
' via Gradient Descent .

Start with Fy= 31 =0 Learning rate

Repeat until convergence:
Calculate all Y]

._.Ii{| = -'.:1]" = LI{ _:1: = 1:} /
=]

b =1 /.

S "

Based on derivative of RSS

Least Squares Estimate. Find ';’” and (37 which minimizes the
residual sum of squares:

1

Ba= if’l - it}} =K} = Z{}:’ — B — B X))’
i=1 =1

=]



Linear Regression

s
.

via Gradient Descent
Start with Fy= 31 =0

Repeat until convergence:
Calculate all Y]

L.Ii{| = _-'.:1]" = EI{Z 1: = 1:}
=1

8 =8 — E.E{Z X;(Y; - ¥3))
=1

e "'\\\.Ill

via Direct Estimates
(normal equations)

s ZiXi- X% -F)
Z:’:l(}{:’ o _X)E

I,é'._.:jﬂ = }—; == lfj] X

Least Squares Estimate. Find .'@ﬂ and (31 which minimizes the

residual sum of squares:

1

(Y = Y)? =) (¥i— By — X))’

=1}




Pearson Product-Moment Correlation

Covariance

Cov(X,Y)=E(XY)-E

—E((X - X)

X

JE(Y)
— }'])

y.

£

L

o o
P =

via Direct Estimates
(normal equations)

S (X~ XY~ F)

\\

Z:;l(=¥i == =’Y)2

k

bo=Y -pX




Pearson Product-Moment Correlation

Covariance
Cov(X.Y) = E(Il”) — E{X}E{}”)

=E((X-X)(Y -Y))
Correlation
Cou(X.Y)

SX Sy

r=ryy =

1 o= [ X;— X\ (¥ -1}
_'H—J.Z( 5y )( Sy

=1

y

=

£

-

o . N\
via Direct Estimates |
(normal equations)
5 _ D i (Xi = X)(l’_} -Y)
ZLILX? == =’Y)2
.-‘I::ji] = }—; — 4}?1 X




Pearson Product-Moment Correlation

Covariance
Cov(X.Y) = E(.‘f]’) — E{X}E{T’)

=E((X-X)(Y -Y))
Correlation
Cov(X.Y)

Sy Sy

r=ryy =

Y, -Y
8y

1 | Xi—X
T -1 Z I( SX

=1

) (5)

|

y.

£

A

L

5

H-\"'—_

\\

via Direct Estimates
(normal equations)

s _ (X = X) (Y- )
Z;Ll(=¥i == =’Y)2

k

bo=Y -pX

[f one standardizes X and Y (i.e. subtract the mean and divide by the standard

deviation) before running linear regression, then: ,-:f”: 0 and [5,=r




Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our
dependent variable: Y, = 3y + 31 X;1 + BoXio + ... + B X1 + €

[f we include and X . = 1 for all i (i.e. adding the intercept to X). Then we can say:

fm

;=) BiXi+e

g=Uu



Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our
dependentvariable: Y; = 3, + 3, Xi1 + 5o X+ ... + BnXon1 + €

[f we include and X . =1 for all i. Then we can say:

I
V. — Z B: X 4+ € [Dr in vector notation h
: =y ' gerossalli: Y =XB8 4+ ¢
q=U
Where j and € are vectors and
X is a matrix.
\_ S




Multiple Linear Regression

Suppose we have muItipIe independent variables that we’d like to fit to our

[f we include and X . =1 for all i. Then we can say:

fm

=Y BiXij+e

j=0

6r in vector notation \

acrossalli: Y = X3 +¢

Where 3 and € are vectors and
X is a matrix.

Estimating 3 :

8= (XTXyxTy
\ | ( ) /




Multiple Linear Regression

Suppose we have multiple independent variables that we’d like to fit to our
dependent Varlable -}/: — ,ig['j —|_ .llj'l ..ck.rj'] —|_ ﬁl‘?{-fz —|_ s _E_ I.lllf)];”.;X”;] —|_ f.-f'

[f we include and X . =1 for all i. Then we can say:

m
6r in vector notation \

Y= E 3:X;; + € | e
’ negre : acrossalli: Y = X083 +¢
=0
- — Wheréfj and € are vectors and
To test for significance of individual I
. . ) 15 a matrix.
Coefficient, j:
l.-*}j '}; Estimating (3 :
SE(5) 2

52 8= (XTX)"' X"y
\/Z” (XU = ‘Yj )‘3 \ /

=1



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification”)

Sot2ioy 2

€ Laj=1Hj%ij]

=p(B8)=P(Y, =1|X =2) = e
p=pf) =P =X =2) ==



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification”)

3 4 m 3
€ T, i

Laj=1Hj%ij

p;,=p(8)=PlY;,=1X=2z2) = e
|

Note: this is a probability here.
In simple linear regression we wanted an expectation:

riz)=E¥Y|A =2g]




Logistic Regression

What if Y. € {0, 1}? (i.e. we want “classification”)

._-. —'—T".” j
€ T, i

Laj=1Hj%ij

| | = 14 Pt o Ao

Note: this is a probability here.
In simple linear regression we wanted an expectation:

riz)=E{¥Y|A =2)

(i.e.if p > 0.5 we can confidently predict Y, = 1)



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification”)

¥ m -

; o P e = € ==
Pi = pr(j) = P(}’ _ l|‘k o I) - 1 _|_{.,'5u'3"E:-lj_; §ix4
p. I
I{jﬂ}.f(j};} = E”g (1 — p-‘) — __Ji” e Z_jj.r;_j

1=1



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification”)

f' '.F” E;”] 'I_.' 1]

p;=pi(8) =P, =1|X=2) = T

1—|—fi“ i1

m
logit(p;) = log = [o + Z Bjxij

P(Y,=0|X =x)



Logistic Regression

What if Y. € {0, 1}7 (i.e. we want “classification”)

p; = p:i(8) = PY;

A m -
e’ o EJ ]j‘_.l 1)

]_|‘1f:l”) L
1 + & 1 35T

logit(p;) = log (lp_) = [p + Z B3 %is

_p!

1=1

To estimate _5 :
one can use

reweighted least squares:

(Wasserman, 2005; Li, 2010)

[ ]

I

set Gy = ... = By = 0 (remember to include an intercept)

. Calculate p; and let W be a diagonal matrix

where element(i, 1) = pi(1 — pi).
‘ }: — Pi - 1; — I
set 2 =logit(p;)) + ————— = A0 + ———
| | #) pi(l —pi) pill —pi)
Set 3= (X'WX) 'X"W2 //weighted lin. reg. of Z on Y.

Repeat from 1 until 7 converges,




